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Abstract 

The electronic state of the 0 2- ion in MgO is studied in 
detail by measuring the isotropic Compton profile and 
profiles in crystal directions [ 100], [ 110], and [ 111]. 
The theoretical profiles are calculated using linear 
combinations of local orbitals orthogonalized to each 
other symmetrically. The orthogonalization is per- 
formed with the 'exact '  cluster method. Nine different 
local wave functions of the O 2- ion have been used as 
the basis of the calculations. The experimental and 
theoretical profiles as well as their Fourier transforms 
are compared with each other. The orthogonalized 
Watson + l  potential-well wave function and the 
orthogonalized L C A O  band function of Pantelides, 
Mickish & Kunz [Phys. Rev. B (1974), 10, 5203-  
5212] were found to describe best the ionic state of O E- 
even though neither of the functions gives complete 
agreement with the experiment. 

1. Introduction 

By their chemical nature, the alkaline-earth oxides 
should lie between the covalent compounds of Groups 
I I I -V  and the alkali halides with ionic character.  Of  
these alkaline-earth oxides, the bonding mechanism in 
MgO has been the object of most intensive experi- 
mental and theoretical studies. This crystal has the 
rocksalt structure and general chemical and dielectric 
considerations demonstrate a strong ionic character for 
the bonding. The generally assumed configuration 
Mg2+O 2- for the basic constituents is not completely 
justified because the isolated 0 2- ion is not a stable one. 
The existence of 0 2- in MgO thus implies that this type 
of constituent must be stabilized by the crystalline field. 
The simplest way to simulate this field is to replace it by 
a so called 'Watson sphere', which is a charged hollow 
sphere with a proper radius. Several such calculations 
have been performed [e.g. wave functions (WF) 4, 5, 6 
and 7 in Table 1 and wave functions by Paschalis & 
Weiss (1969); for criticism concerning these wave 
functions, see Abarenkov & Antonova (1979)1. More 

refined wave functions for all states or for the 2p state 
only of 0 2- have been obtained both by cohesive- 
energy (e.g. W F  1, 2 and 3, as well as a very early and 
an approximate one, WF 8 in Table 1) and by 
band-structure calculations (WF 9 in Table 1). The 
main differences between the various wave functions 
given in Table 1 are in the 2p functions of the 0 2- ion. 
Roughly speaking, the wave functions are arranged in 
Table 1 in an order in which the higher order number 
means the more extended 2p state (cf Fig. 1). 

The experimental and theoretical scattering factors 
of MgO have been compared with each other by 
Dawson (1969) and by Sanger (1969). The Compton 

Table 1. Wave functions used for the present LCA 0 
calculations for the MgO crystal 

The wave functions for the free Mg 2÷ ion of Clementi (1965) and 
those for the 02- ion of Watson (1958) in the case of + 1 potential 
well have been used unless otherwise stated. The values of Jfree(0) 
are calculated from the non-orthogonalized wave functions. 
References for the wave functions are: WF 1, Yamashita & Asano 
(1970); WF 2, Abarenkov & Antonova (1979), case II; WF 3, 
Calais, M~ikil~i, Mansikka, Pettersson & Vallin (1971); WF 4, 
WF 5, Schwarz & Schulz (1978) and Schwarz (1980); WF 6, 
WF 7, Watson (1958); WF 8, Yamashita & Kojima (1952); 
WF 9, Pantelides, Mickish & Kunz (1974). 

Reference number 
for the wave 

functions Jfree(0) 

WF 1 5-931 
WF 2 5"963 
WF 3 6" 193 
WF4 6"110 

WF 5 6.267 

WF 6 6.202 

WF 7 6.349 

WF 8 6.330 
WF 9 6.459 

Jisotr(0) Explanation 

5.630 02- (2p states). 
5.655 O 2- (all states). 
5.685 02- (2p states). 
5.687 02- (all states): Watson- 

sphere radius 1.2 A. The 
numerical WF's were 
fitted to STO's by the 
authors. 

5.719 As WF 4, except Watson- 
sphere radius 1.4 A. 

5.726 02- (all states): +2 potential 
well. 

5.750 02- (all states): see WF 6, 
+ 1 potential well. 

5.803 02- (2p states). 
5.813 MH 2÷ (all states), 

02- (all states). 
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profiles have been compared by Togawa, Inkinen & 
Manninen (1971), Weiss (1970) and Fukamachi & 
Hosoya (1971). However, the earlier experimental data 
on Compton profiles were not corrected for multiple 
scattering effects. All these comparisons are not 
adequate for the theoretical consideration because the 
strong non-orthogonality of the wave functions is not 
considered. This was done in the calculations by 
Mansikka & Aikala (1973) [cf. also Aikala (1974) and 
Berggren, Manninen, Paakkari, Aikala & Mansikka 
(1977)] in an approximate way including the first two 
terms in the binomial series of the orthogonalization 
corrections. However, this approximation has been 
found unsatisfactory because of the large overlap 
between the adjacent 0 2- ions (Aikala, 1980). 

The atomic charge densities in MgO have been 
studied by Vidal-Valat, Vidal & Kurki-Suonio (1978) 
on the basis of Sanger's (1969) structure factor data. 
Recently, Redinger & Schwarz (1981) have compared 
the SCF APW charge densities in MgO to the free-ion 
densities calculated within the Watson-sphere model 
and found an excellent agreement. However, in neither 
of these works was the non-orthogonality of the 
free-ion wave functions considered. 

On a purely theoretical basis the wave functions 1, 2, 
3 and 9 should be the best ones. This is a contradictory 
claim because the 2p states of 0 2- differ very much in 
these wave functions (cf. Fig. 1). 

In this paper reliable experimental Compton profile 
data are given in various crystal directions. The 
theoretical profiles are calculated within the LCAO 
approximation by applying the 'exact' cluster 
orthogonalization procedure (Aikala, 1980) to the 
various basis functions presented in Table 1. The 
orthogonality is a necessary but not sufficient condition 
for the true crystal wave functions; the quality of the 

t 
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Fig. 1. Radial wave function, R2p(r).r, for 0 2- in various 
theoretical approximations: Watson (WF 7, solid line), 
Abarenkov & Antonova (WF 2, dotted line), Schwarz & Schulz 
(WF 4, broken line) and Pantelides et al. (WF 9, broken-dotted 
line). 

various wave functions in Table 1 depends on the 
validity of the approximations made in the calculations 
(see references in Table 1). The experimental and 
theoretical results are finally compared with each other 
to study the ionic state of the 0 2- ion, with special 
attention to the 2p state. 

2. Experimental 

Compton profiles were measured using 59.537 keV 7- 
rays from a 241Am annular source [nominal activity 5 
Ci (19 x 10 l° Bq)]. The scattering angle was 174.5 ° 
and the resolution of the spectrometer 0.6 a.u. 
(FWHM). An isotropic profile was also measured using 
a scattering angle of 166 °. Details of experimentation 
and data processing have been published previously 
(Manninen & Paakkari, 1978; Paatero, Manninen & 
Paakkari, 1974; Halonen, Williams & Paakkari, 1975). 

Thin (0.75 mm) slices were cut from a single crystal 
of MgO along the crystal planes (100), (110) and 
(111). For powder samples, high-purity MgO powder 
was heated for several hours at 753 K to decompose 
Mg(OH) 2. The absence of Mg(OH) z in powder samples 
and the perfectness of single-crystal samples was 
proved by X-ray diffraction. 

The total number of counts collected for each sample 
was about 15 x 106, which corresponded to a peak 
count of 3 x 105 with a channel spacing of 0.1 a.u. of 
momentum. Data were corrected for the effects of 
background, absorption in the sample, the energy 
dependence of the differential cross section, and the 
experimental resolution. The contribution of double 
Compton scattering was calculated using a Monte 
Carlo program. The total amount was about 2% and 
7% and its effect at J(0) 0.4% and 0.9% for powder 
and single-crystal samples, respectively. In difference 
curves the effects of all of these corrections were very 
small. 

It was also found that the correction applied for 
double scattering was negligible when z > 3 a.u. in the 
Fourier transforms of the profiles, B(z). The correction 
had no effect on the anisotropy of B(z), i.e. the 
difference curves. This is understandable because the 
profile of the double scattering is very flat and thus 
contributes to B(z) only at low values of z. 

The direction of the scattering vector deviates 
systematically on average by three degrees from the 
exact crystal direction in the present experimental 
arrangement. In fact, the scattering vector always lies 
on a surface of a cone, the axis of which is parallel to 
the reported crystal direction. Aikala (1981) has shown 
that this deviation together with the beam divergences 
(5 ° FWHM) has a negligible effect on the experi- 
mental anisotropy curves in the present case. 
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3. Theoretical 

Within the LCAO model the first-order density matrix 
p(r,r') for the crystal composed of 'closed-shell' 
constituents is given by (L6wdin, 1955): 

p(r,r') = Z ~ W,(r) (/~-l)l/. v ~ ( r  t) (1) 
p 

when local orbitals ~U,(r), which are supposed to be 
known, are used as the basis. In (1) A\ -~ is the inverse 
of the metric matrix A\ with elements 

A,~ = f 7t~, (r) ~u~(r) d 3 r. (2) 

So far, mainly the binomial series expansion for A\ -1 in 
= A\ --11 (~ is the unit matrix) has been used. $ is 

called the overlap matrix. Recently, one of the authors 
has used a cluster method to calculate A\ -1 more 
accurately (Aikala, 1980). The method is based on the 
equation 

"]]- A \ =  "~ ( T =  A\ -1 )  (3)  

and the site symmetries of the atoms/ions in the crystal 
are exploited completely to make the problem tractable. 

The momentum density p(p) can then be obtained as 
the double Fourier transform of p(r,r') given by 
equation (1). The Compton profile Jk(Pz) in the 
direction k is by definition the one-dimensional projec- 
tion of the momentum density on the line defined by the 
scattering vector k (see e.g. Williams, 1977). The 
details for computing the Compton profiles from the 
first-order density matrix (1) are given elsewhere 
(Aikala, 1975a, 1975b, 1976, 1977). 

The Fourier transforms Bk(Z) of the theoretical (and 
experimental) Compton profiles Jk(P~) can then be 
calculated with standard FFT (Fast Fourier Trans- 
form) programs. 

4. Results and discussion 

The experimental isotropic Compton profile of MgO is 
given in Table 2 together with a theoretical profile 
calculated using WF 7. The area under the curve is 
normalized to 9.6049 e for Pz = [0,7] using steps of 0.1 
a.u. The differences between the experimental profile (0 
-- 166 ° in Table 2) and some theoretical profiles after 
convolution with the RIF (Residual Instrument Func- 
tion) of the experiment are given in Fig. 2. These are 
chosen to represent all the typical features of the 
various curves and the most recently published wave 
functions have been taken as the representatives. 

WF 1 and WF 2 give mutually similar profiles as do 
pairs WF 8 and WF 9, WF 3 and WF 4, and WF 5 and 
WF 6. The difference in the two last mentioned pairs is, 
however, rather small. The best agreement is obtained 
with the profiles calculated using WF 7 and WF 9 as 

the basis. It is an interesting feature that these functions 
give opposite signs to the difference in the regions 
where largest discrepancies between theory and experi- 
ment occur. 

The present theoretical results can be compared 
with the series expansion results by Mansikka & Aikala 
(1973) (see also Berggren et al., 1977). These profiles 
are fiat in comparison with the present 'exact' ones. For 
instance, Jsler i s o t r ( 0 )  : 5.575 and J i l s o t r ( 0 )  = 5.630 for 
WF 1 a n d  J~er, isotr(0) : 5.597 and JiTsotr(0)= 5.750 for 
WF 7. Thus the series expansion orthogonalization is a 
poor approximation for MgO, at least in terms of the 
Compton profile. This is not the case when typical ionic 
solids like LiF are considered (Aikala, 1979a). This 
fact is partially responsible for the previously found 

Table 2. The experimental, isotropie Compton profile 
of MgO 

The result obtained at the scattering angle of 175 ° is given for 
comparison. The theoretical profile, JT(pz ), is calculated using 
WF 7. The residual instrument function (RIF) and its Fourier 
transform (RAF) correspond to the value 30 of the deconvolution 
parameter X (see Paatero, Manninen & Paakkari, 1974). The values 
ofp~ and z are in atomic units and the statistical error (3a) is given 
at some points. 

J(P~)lsotr RIF RAF 
pz 166 ° 175 ° JV(pz) (2=30)  z (2=30)  

0"0 5.774 5-770 5.750 1"600 0"0 1.000 
+ 0"025 

0"1 5"751 5.739 5.728 1.522 0.25 0.999 
0-2 5.676 5.664 5.660 1-304 0"5 0.997 
0"3 5.551 5.546 5"545 0"995 0.75 0.994 
0.4 5"376 5.382 5.379 0.641 1.0 0.990 
0"5 5"156 5-174 5-160 0.314 1-25 0"987 
0'6 4.894 4-922 4"898 0"056 1"5 0"985 
0"7 4-598 4"632 4"604 --0" 112 1.75 0.984 
0"8 4"277 4.309 4.284 --0" 190 2.0 0.983 
0"9 3"943 3"968 3'948 --0" 195 2'25 0.982 
1 "0 3.604 3.619 3"606 - 0 - 1 5 4  2"5 0.978 

+ 0-020 - 
1"1 3.273 3.278 3.271 --0.091 2.75 0"970 
1.2 2"956 2.954 2"955 --0.031 3.0 0"958 
1 "3 2.664 2"658 2"668 0.014 3-25 0-933 
1 "4 2"400 2-395 2.415 0"039 3"5 0-900 
1"5 2"167 2-169 2.196 0"046 3.75 0"858 
1 "6 1 "964 1.976 2"008 0.040 4.0 0-795 
1"7 1-791 1.811 1.847 0.026 4.25 0.732 
1"8 1.644 1"669 1.705 0-012 4"5 0"660 
1-9 1.519 1'546 1.578 0-000 4-75 0.581 
2-0 1.412 1.433 1.462 - 0 . 0 0 8  5.0 0.497 
2.2 1'233 1.238 1.260 - 0 - 0 1 0  5-25 0.412 
2"4 1.081 1.073 1.092 - 0 . 0 0 4  5.5 0"337 
2"6 0.947 0-938 0.952 0.001 5.75 0-264 
2"8 0.828 0"825 0"836 0.002 6.0 0.200 
3"0 0"733 0-726 0.737 0.001 6"25 0" 150 

_+0"010 
3"5 0.554 0.540 0.547 -0-001 6"5 0" 107 
4-0 0"425 0"418 0"417 6"75 0.082 
4"5 0"335 0"330 0.329 7.0 0.051 
5"0 0.273 0-271 0.263 7-25 0-036 
6"0 0.184 0.181 0-176 7.5 0-025 
7"0 0.128 0-127 0.122 
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Table 3. Theoretical and experimental Compton 
profiles of MgO in the directions [ 1001, [ 110] and [ 111 ] 

The theoretical profiles are calculated using WF 7 and integrated 
with the method explained by Aikala (1977, p. 50). 21 orders of 
neighbours are included and the numbers of the Gauss-Legendre 
integration points are 96 for Pz = [0,21, 64 for pz = 12.2,41 and 
48 for p~ > 4 a.u. 

lexp /'exp lexp Pz J~loo) J~l lO) JCIII) ~(loo) ~(11o) ~(111) 
0-0 5-748 5.680 5-706 5.700 5-681 5.667 
0.1 5.730 5.692 5.720 5.666 5.650 5.643 
0.2 5.668 5.672 5.688 5.589 5.575 5.577 
0.3 5.549 5.568 5.558 5.468 5.459 5.470 
0.4 5.368 5.397 5.387 5.302 5.300 5.316 
0.5 5.135 5.175 5.189 5.093 5.100 5.114 
0.6 4.861 4.902 4.932 4-843 4.861 4.871 
0.7 4.558 4.594 4.621 4.558 4.585 4.588 
0.8 4.237 4.285 4.285 4.249 4.282 4.275 
0.9 3.913 3.982 3.935 3.926 3.957 3.944 
1.0 3.593 3.657 3.576 3.600 3.621 3.603 
1.1 3.287 3.303 3.232 3.279 3.285 3.265 
1.2 3.003 2.948 2.925 2.974 2.963 2.944 
1.3 2-746 2.633 2.655 2.692 2.664 2.649 
1.4 2-509 2.373 2.410 2.435 2.396 2.385 
1.5 2-281 2.158 2.190 2.205 2.165 2.132 
1.6 2.062 1.977 2.004 2.000 1.968 1.967 
1.7 1-862 1.826 1.851 1.821 1.802 1.807 
1-8 1.689 1.698 1.715 1.665 1.665 1.672 
1-9 1.543 1.581 1.585 1.530 1.548 1.553 
2.0 1.418 1.473 1.465 1.415 1.447 1.450 
2.2 1.220 1-292 1.266 1.224 1.269 1.262 
2.4 1.069 1.101 1.097 1.078 1.106 1.097 
2.6 0.947 0.951 0.955 0.959 0.955 0.956 
2.8 0.845 0.823 0.837 0.860 0.831 0.840 
3.0 0.756 0.731 0.734 0.768 0.737 0.740 
3.5 0.547 0-550 0.546 0.548 0.557 0.552 
4.0 0.410 0.414 0.417 0.431 0.435 0.436 
4.5 0.329 0.330 0.329 0.343 0.341 0.342 
5-0 0.266 0.261 0.263 0.275 0.276 0.281 
6-0 0.175 0.176 0.176 0.191 0.188 0.191 
7.0 0.122 0.122 0.122 0.133 0.133 0.133 
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Fig. 2. Differences between the experimental and theoretical 
isotropic Compton profiles of MgO. For theoretical profiles the 
wave functions mentioned in the caption of Fig. 1 have been 
used. 

disagreement between theory and experiment (see 
Berggren et al., 1977). 

The directional Compton profiles were calculated 
using the same method and the same wave functions as 
the isotropic profiles. As an example, the directional 
profiles in the crystal directions [ 100], [110], and [111], 
calculated using WF 7, are given in Table 3 together 
with the present experimental profiles. 

The experimental and convoluted (with RIF given in 
Table 2) theoretical anisotropies Ju 10) - -  J ( 1 0 0 )  and Ju11) 
- Jul0) are compared in Figs. 3 and 4. The experi- 
mental anisotropies are given as an average of the 
values of the profile at positive and negative p~. The 
agreement is found to be rather good except at low 
values of p~ where some deviations occur. The various 
theoretical curves differ little from each other, most 
when p~ < 1. If these anisotropies are compared with 
those of alkali halides with the same NaC1 structure 
(Berggren, Martino, Eisenberger & Reed, 1976; Aikala 
& Salonen, 1978; Aikala, 1979b) they are found to 
resemble each other. Thus the main features of the 
anisotropy can be deduced to depend on the structure 
likewise in the case of alkali halides (Aikala, 1979b) 
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Fig. 3. Difference between the directional profiles J,~0} - Ju00r The 

experimental result is given by circles and the experimental errors 
are indicated at some points. The theoretical results are given 
using wave functions by Watson (WF 7, solid line), Abarenkov 
& Antonova (WF 2, dotted line) and Schwarz & Schulz (WF 4, 
broken line). 
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Fig. 4. Difference between the directional profiles J(~l i) - -  J(l~0}. For 

further explanation, see caption for Fig. 3. 
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and other NaCI structures (Seth, Paakkari, Manninen 
& Christensen, 1977). 

The Fourier transforms of the isotropic and direc- 
tional profiles were also calculated and compared with 
the experimental data (Figs. 5-9). In Fig. 5 the iso- 
tropic B(z) functions are shown. The experimental 
and theoretical curves agree quite well, although the 

minimum at z = 4.3 a.u. is correctly produced only 
when WF 9 is used. In the case of B(]00 ) (Fig. 6) the 
theoretical functions differ noticeably from each other 
and from the experimental one when 3.5 < z < 5 a.u. 
In the experimental curve a shallow (double) minimum 
can be seen. The second minimum is reproduced by all 
theoretical wave functions. At the position of the first 
minimum the theoretical curves have only shoulders of 
various heights except in the curve corresponding to 
WF 9 where there is only a change of the slope. To 
clarify this feature various approximations for the 
theoretical B(100 ) are drawn in Fig. 8 using WF 1. It 
should be mentioned that the one-center orthogonal- 
ization contribution is included in all of the curves 
excluding the free-ion curve. Inclusion of the first two 
orders of neighbours produces almost completely the 
'exact' curve. Further, the second neighbours are seen 
to be responsible for the shoulder or, if the series 
expansion approximation is considered, the minimum 
of the B(~oo ) curve. The series approximation produces 
larger elements for the inverse metric matrix than the 
'exact' inversion. Thus an enlargement of the 'exact' 
elements might replace the shoulder by a minimum. On 
the other hand, such changes in the wave functions 
which produce larger inverse metric matrix elements 
will also cause other changes to the course of the B(loo ) 
curve. The minimum is not then produced, but instead 
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Fig. 5. Fourier transform of the isotropic Compton profile of MgO, 
B(z)lsotr. Circles give the experimental result; for other ex- 
planations, see caption for Fig. 1. 

the shoulder occurs higher, which can be seen by 
comparing corresponding curves in Figs. 1 and 6. 

In Fig. 9 the differences B(]lO I - B(1001 and B(~l~ ) -- 
B(110 ) are shown. The agreement between theory and 
experiment is reasonable except close to the origin. On 
the other hand, the possibility of some systematic error 
in the experimental curves is larger in this region. The 
most contracted wavefunction WF 2 (which produces 
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Fig. 6. Fourier transform of the Compton profile in the crystal 
direction [100]. Circles give the experimental result; for other 
explanations, see caption for Fig. 1. 
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Fig. 7. Fourier transforms of the Compton profile in crystal 
directions (a) [1101, (b) [111]. Circles give the experimental 
result; for other explanations, see caption for Fig. 1. 
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the smallest inverse metric matrix elements) is seen to 
give correctly the min}mum at z ___ 4 a.u. in Fig. 9(a). 
Thus the difference found between the experimental 
and theoretical B(100 ~ curves near z ~_ 4 a.u. can be of 
isotropic nature, at least in the case of WF 2. Indeed, a 
similar difference is also found in the isotropic B(z)  
curves. 

8(loo) - R A F 

3 4 5 6 
Z / a . u  

Fig. 8. Effects of the neighbours upon the Fourier-transformed 
Compton profile of MgO in thc direction [ 100]. Wavefunctions 
given by Yamashita & Asano (WF 1) have been used for this 
calculation for the 0 2- ion. Explanation of numbered curves: (1) 
Bc~00 ~ for free ions: (2) series expansion up to first neighbours: (3) 
exact result up to first neighbours: (4) series expansion up to 
second neighbours; (5) exact result up to second neighbours: (6) 
the exact result for Bt~00 ~ when all 21 orders of the neighbours are 
taken into account: (7) experimental result. 
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Fig. 9. Anisotropy of the Fourier-transformed Compton profiles. 
(a) B~o ~ - Bc~oo ~, (b) Bc~, - B~o ~. For further explanations, 
see caption for Fig. 3. 

Redinger & Podloucky (1981) have calculated the 
Compton profiles of MgO with the self-consistent A P W  
method. Their results are close to those obtained using 
WF 9 which are based on the LCAO band calculation. 
Thus both of the methods seem to give results 
compatible with the Compton profiles. On the other 
hand, all cohesive-energy calculations seem to give 
mutually similar results which deviate from the results 
of the band calculation. The band calculation (WF 9) 
seems to give Compton profiles which are in better 
agreement with the experiment than any of the 
cohesive-energy calculations (WF 1 - W F  3). The 
reason why the cohesive-energy calculations fail in this 
respect is not known; in some cases the reason might be 
the lack of flexibility of the basis. 

In conclusion one can say that none of the wave 
functions 1-9 when orthogonalized reproduces all 
features of the experiment completely, but the best ones 
are the Watson + 1 well and the L C A O  band function 
of Pantelides et al. (WF 9), whereas the functions 
obtained by cohesive-energy calculations give the worst 
agreement between theory and experiment. 

The authors wish to thank Drs R. Podloucky and J. 
Redinger for sending their data prior to publication and 
Professor K. Schwarz for the numerical wavefunctions 
for 0 2-. Miss R. Str6m and Miss M.-L. Putkonen have 
given valuable help in the computations. TP and SM 
are indebted to the National Research Council for 
Science, Finland, for financial support. 

References 

ABARENKOV, I. V. & ANTONOVA, I. M. (1979). Phys. Status 
Solidi B, 93, 315-323. 

AIKALA, O. (1974). J. Phys. C, 7, L40-L43. 
AIKALA, O. (1975a). Philos. Mag. 31, 935-942. 
AIKALA, O. (1975b). Philos. Mag. 32, 333-341. 
AIKALA, O. (1976). Philos. Mag. 33, 603-611. 
AIKALA, O. (1977). Report D1. Department of Physical 

Sciences, Univ. of Turku, Turku, Finland. 
AIKALA, O. (1979a). J. Phys. C, 12, L581-L585. 
AIKALA, O. (1979b). Solid State Commun. 32, 699-701. 
AIKALA, O. (1980). J. Phys. C, 13, 5931-5939. 
AIKALA, O. (1981). To be published. 
A I K A L A ,  O .  & S A L O N E N ,  K .  (1978). Report No. R6. 

Department of Physical Sciences, Univ. of Turku, Turku, 
Finland. 

BERGGREN, K.-F., MANNINEN, S., PAAKKARI, Z., AIKALA, 
O. & MANSIKKA, K. (1977). Compton Scattering, edited 
by B. WILLIAMS. London: McGraw-Hill. 

BERGGREN, K.-F., MARTINO, F., EISENBERGER, P. & REED, 
W. A. (1976). Phys. Rev. B, 13, 2292-2304. 

C A L A I S ,  J .  L., MAKILA, K., MANSIKKA, K., P E T T E R S S O N ,  G. 
& VALLIN, J. (1971). Phys. Scr. 3, 39-42. 

CLEMENTI, E. (1965). Tables o f  Atomic Functions. Suppl. to 
I B M &  Res. Dev. 9, 2-19. 

DAWSON, B. (1969). Acta Cryst. A25, 12-29. 



O. A I K A L A ,  T. P A A K K A R I  A N D  S. M A N N I N E N  161 

FUKAMACHI, T. & HOSOYA, S. (1971). J. Phys. Soc. Jpn, 31, 
980-989. 

HALONEN, V., WILLIAMS, I .  & PAAKKARI, Z. (1975). Phys. 
Fenn. 10, 107-122. 

L0WDIN, P. O. (1955). Phys. Rev. 97, 1490-1508. 
MANNINEN, S. & PAAKKARI, T. (1978). Nucl. Instrum. 

Methods, 155, 115-119. 
MANSIKKA, K. & AIKALA, O. (1973). Ann. Univ. Turku. 

Set. A l, pp. 43-55. 
PAATERO, P., MANNINEN, S. & PAAKKARI, T. (1974). Phi los .  

Mag. 30, 1281-1294. 
PANTELIDES, S. T., MICKISH, D. J. & KUNZ, A. B. (1974). 

Phys. Rev. B, 10, 5203-5212. 
PASCHALIS, E. & WEISS, A. (1969). Theor. Chim. Acta, 13, 

381-408. 
REDINGER, J. & PODLOUCKY, R. (1981). Private com- 

munication. 
REDINGER, J. & SCHWARZ, K. (1981). Z. Phys. Chem. Abt. 

B, 40, 269-276. 

SANGER, P. L. (1969). Acta Cryst. A25, 694-702. 
SCHWARZ, K. (1980). Private communication. 
SCHWARZ, K. & SCHULZ, H. (1978). Acta Cryst. A34, 

994-999. 
SETH, A., PAAKKARI, Z., MANNINEN, S. dr. CHRISTENSEN, 

A. N. (1977). J. Phys. C, 10, 3127-3139. 
TOGAWA, S., INKINEN, O. & MANNINEN, S. (1971). J. Phys. 

Soc. Jpn, 30, 1132-1135. 
VIDAL-VALAT, G., VIDAL, J. P. & KURKI-SUONIO, K. (1978). 

Acta Cryst. A34, 594-602. 
WATSON, R. E. (1958). Phys. Rev. I l l ,  1108-1110. 
WEISS, R. J. (1970). Philos. Mag. 21, 1169-1173. 
WILLIAMS, B. G. (1977). Editor. Compton Scattering. 

London: McGraw-Hill. 
YAMASHITA, J. & ASANO, S. (1970). J. Phys. Soc. Jpn, 28, 

1143-1150. 
YAMASHITA, J. & KOJIMA, M. (1952). J. Phys. Soc. Jpn, 7, 

261-263. 

Short Communicat ions  
Contributions intended for publication under th.is heading should be expressly so marked; they should not exceed about 1000 

words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as 
possible. 

Acta Cryst. (1982). A38, 161-163 

The rapid computation of mean path length for spheres and cylinders. By J. E. TmBALLS, Department of 
Physics, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland 

(Received 3 April 1981; accepted 16 June 1981) 

Abstract 

Extension of the interpolation formulae of Dwiggins [Acta 
C~.st. (1975), A31, 146-148] for the rapid calculation of 
absorption corrections is shown to allow the equally rapid 
calculation of the mean path length, 7", required for extinction 
corrections. The coefficients required to set up the cal- 
culations are tabulated. They approximate 7" to within 0.5% 
R at low 20 and 2% R at 0 = 90 ° for/~R _< 2.5 and also 
provide the derivatives required to estimate /tR by the 
least-squares analysis of powder diffraction profiles for 
~ R >  1. 

Accurate analyses of X-ray and neutron diffraction data 
require correction of individual intensities for extinction in 
the sample. The correction requires knowledge of the mean 
path length of the beam 

T= 
1 t" 

| te-"tdV, (1) 
VA ,y 

v 

0567-7394/82/0 l0161-03501.00 

where t is the path length in a crystal with absorption 
coefficient/~ of a ray scattered in volume element d V. For a 
general shape, the mean path length T is evaluated in 
conjunction with the computation of the transmission factor 
A by numerical integration. 

For two cases, of the spherical sample in any orientation 
and the cylindrical sample when data is collected in the plane 
normal to its axis, tabulation of the calculations is feasible. 
Bond (1959), Rouse, Cooper, York & Chakera (1970) and 
subsequently Dwiggins (1975a, b) provided values of A* - 
1/A for values of the scattering angle 0, and the product,/.tR, 
of the absorption coefficient and the sample radius. Pryor & 
Sanger (1970) obtained values of ~" for spheres by Gaussian 
integration for /.tR N 10 while Flack & Vincent (1978) 
employed numerical differentiation of Dwiggin's (1975b) 
tabulation for ¢zR N 2.5. Rouse et al. (1970) and Dwiggins 
(1975a) provide analytical approximations for/~R less than 1 
and 2.5, respectively. 

In this note we show that Dwiggins's (1975a) approxi- 
mation formulae may be extended to cover A * and it" for both 
spheres and cylinders, obtaining an accuracy of 0.5 % in A* 
and achieving the accuracy in it" necessary for extinction 
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